Here, we tested the effect of even spacing of sensitivities on colour discrimination in a tetrachromatic visual system. Specifically, we ran visual models with an evenly spaced visual system and an unevenly spaced visual system, then compared spectral contrast in all three comparison groups (‘leaf vs. flower’, ‘leaf vs. beetle’, ‘beetle vs. flower’).
These two visual systems have the same upper and lower sensitivities with varying distribution of the two middle sensitivities. The evenly spaced visual system has peak sensitivities at 355 nm, 455 nm, 560 nm, and 660 nm, while VS 660 from the Main models section is used to represent the unevenly spaced visual system, with peak sensitivities at 355 nm, 445 nm, 530 nm, and 660 nm.
The model parameters and the statistical methods remain the same as described in the main text.
Figure caption: Sensitivity curves of the evenly spaced visual system (solid lines) and the unevenly spaced visual system (VS 660; dotted lines).
Figure caption: Normalised sensitivity curves of the evenly spaced visual system (solid lines) and the unevenly spaced visual system (VS 660; dotted lines).
## D65
get.d65.vismodel <- function(i){
vs.i <- vismodel(dataset[1:501,],
visual = i, #this need to change according to the visual system
bkg = aveleaf$aveleaf,
illum = irradiance.d65[1:501,2],
qcatch = 'fi',
relative = FALSE,
vonkries = TRUE)
return(vs.i)
}get.evenspace.coldist <- function(i){
con <- coldist(modeldata = i, # put output of vismodel()
noise="neural",
achro=FALSE,
n = c(1.14,1,1.26,1.38),
weber = 0.12,
weber.ref = 4)
return(con)
}
#Contrast calculation
Cbuprest.even.space.d65 <- get.evenspace.coldist(buprest.even.space.d65)
#VS660
Cbuprest660 <- get.evenspace.coldist(buprest660)
#combine all contrast value in each comparison group
even.vissys_d65 <- list(Cbuprest.even.space.d65, Cbuprest660)
even.fl.vissys <- list("even.fl", "Vis5.fl")
even.bl.vissys <- list("even.bl", "Vis5.bl")
even.bf.vissys <- list("even.bf", "Vis5.bf")
### flower vs leaf
allvis.fl_d65.even <- data_frame()
for (i in 1:length(even.vissys_d65)) {
temp.i <- even.vissys_d65[[i]] %>%
filter(str_detect(patch1,"flower")) %>%
filter(str_detect(patch2,"leaves"))
temp.i$vissys <- strrep(even.fl.vissys[[i]],1)
allvis.fl_d65.even <- temp.i %>% rbind(allvis.fl_d65.even)
}
### beetle vs leaf
allvis.bl_d65.even <- data_frame()
for (i in 1:length(even.vissys_d65)) {
temp.i <- even.vissys_d65[[i]] %>%
filter(str_detect(patch2,"beetle")) %>%
filter(str_detect(patch1,"leaves"))
temp.i$vissys <- strrep(even.bl.vissys[[i]],1)
allvis.bl_d65.even <- temp.i %>% rbind(allvis.bl_d65.even)
}
### beetle vs flower
allvis.bf_d65.even <- data_frame()
for (i in 1:length(even.vissys_d65)) {
temp.i <- even.vissys_d65[[i]] %>%
filter(str_detect(patch1,"flower")) %>%
filter(str_detect(patch2,"beetle"))
temp.i$vissys <- strrep(even.bf.vissys[[i]],1)
allvis.bf_d65.even <- temp.i %>% rbind(allvis.bf_d65.even)
}
| system | flower.vs.leaf | beetle.vs.leaf | beetle.vs.flower |
|---|---|---|---|
| evenspace | 7.439 | 6.187 | 7.684 |
| VS 660 | 7.553 | 6.346 | 7.815 |
To compare contrasts between visual systems, We conducted Wald chi-square tests on generalised linear mixed models (GLMM) followed by posthoc tests.
In the models, we assigned
get.lmer <- function(datlist, compnnumber){
lmer(dS ~ vissys + (1|patch2) + (1|patch1),
data = datlist[[compnnumber]], REML = F)
#REML=F, in order to fit the model using the likelihood ratio test. Otherwise, the lmer default will fit the model using the REML (REstricted Maximum Likelihood) criterion.
}
get.posthocsum <- function(modelx){
summary(glht(modelx,
linfct = mcp(vissys = "Tukey")),
test = adjusted("bonferroni"))
}| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| vissys | 9.796 | 1 | 0.001749 |
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| vissys | 16.88 | 1 | 3.984e-05 |
| Chisq | Df | Pr(>Chisq) | |
|---|---|---|---|
| vissys | 5.045 | 1 | 0.0247 |
For all three comparison groups, VS 660 (unevenly spaced visual system) has significantly higher contrast than the evenly spaced visual system. This indicates that our results were not biased by uneven spacing of spectral sensitivities in our hypothetical visual systems.